關于易學仕 | 好老師教育官網 |
移動APP下載

掃碼下載易學仕在線APP

專升本/專轉本/專接本
當前位置: 易學仕在線> 考試資訊> 報考> 大綱> 浙江> 浙江專升本數(shù)學考試范圍是哪些?以考試大綱為依據

浙江專升本數(shù)學考試范圍是哪些?以考試大綱為依據

發(fā)布時間:2021/01/27 16:25:00 來源:易學仕專升本網 閱讀量:11953 熱點: 2021浙江專升本 浙江專升本考試大綱

摘要:浙江專升本數(shù)學考試范圍是哪些?易學仕從浙江專升本高等數(shù)學考試大綱中得出考試范圍是函數(shù)、極限和連續(xù)、一元函數(shù)微分學、一元函數(shù)積分學、無窮級數(shù)、常微分方程、向量代數(shù)與空間解析幾何的基本概念、基本理論和基本方法,下面我們具體來看看吧!

  浙江專升本數(shù)學考試范圍是哪些?易學仕從浙江專升本高等數(shù)學考試大綱中得出考試范圍是函數(shù)、極限和連續(xù)、一元函數(shù)微分學、一元函數(shù)積分學、無窮級數(shù)、常微分方程、向量代數(shù)與空間解析幾何的基本概念、基本理論和基本方法,下面我們具體來看看吧!

浙江專升本數(shù)學考試范圍是哪些?

考試要求

考生應按本大綱的要求,掌握“高等數(shù)學”中函數(shù)、極限和連續(xù)、一元函數(shù)微分學、一元函數(shù)積分學、無窮級數(shù)、常微分方程、向量代數(shù)與空間解析幾何的基本概念、基本理論和基本方法??忌鷳⒁飧鞑糠种R的結構及知識的聯(lián)系;具有一定的抽象思維能力、邏輯推理能力、運算能力和空間想象能力;能運用基本概念、基本理論和基本方法進行推理、證明和計算;能運用所學知識分析并解決一些簡單的實際問題。

考試內容

一、函數(shù)、極限和連續(xù)

(一)函數(shù)

1.理解函數(shù)的概念,會求函數(shù)的定義域、表達式及函數(shù)值,會作出一些簡單的分段函數(shù)圖像。

2.掌握函數(shù)的單調性、奇偶性、有界性和周期性。

3.理解函數(shù)y=?(x)與其反函數(shù)之間的關系(定義域、值域、圖像),會求單調函數(shù)的反函數(shù)。

4.掌握函數(shù)的四則運算與復合運算; 掌握復合函數(shù)的復合過程。

5.掌握基本初等函數(shù)的性質及其圖像。

6.理解初等函數(shù)的概念。

7.會建立一些簡單實際問題的函數(shù)關系式。

(二)極限

1.理解極限的概念(只要求極限的描述性定義),能根據極限概念描述函數(shù)的變化趨勢。理解函數(shù)在一點處極限存在的充分必要條件,會求函數(shù)在一點處的左極限與右極限。

2.理解極限的唯一性、有界性和保號性,掌握極限的四則運算法則。

3.理解無窮小量、無窮大量的概念,掌握無窮小量的性質,無窮小量與無窮大量的關系。會比較無窮小量的階(高階、低階、同階和等價)。會運用等價無窮小量替換求極限。

4.理解極限存在的兩個收斂準則(夾逼準則與單調有界準則),掌握兩個重要極限:并能用這兩個重要極限求函數(shù)的極限。

(三)連續(xù)

1.理解函數(shù)在一點處連續(xù)的概念,函數(shù)在一點處連續(xù)與函數(shù)在該點處極限存在的關系。會判斷分段函數(shù)在分段點的連續(xù)性。

2.理解函數(shù)在一點處間斷的概念,會求函數(shù)的間斷點,并會判斷間斷點的類型。

3.理解“一切初等函數(shù)在其定義區(qū)間上都是連續(xù)的”,并會利用初等函數(shù)的連續(xù)性求函數(shù)的極限。

4.掌握閉區(qū)間上連續(xù)函數(shù)的性質:最值定理(有界性定理),介值定理(零點存在定理)。會運用介值定理推證一些簡單命題。

二、一元函數(shù)微分學

(一)導數(shù)與微分

1.理解導數(shù)的概念及其幾何意義,了解左導數(shù)與右導數(shù)的定義,理解函數(shù)的可導性與連續(xù)性的關系,會用定義求函數(shù)在一點處的導數(shù)。

2.會求曲線上一點處的切線方程與法線方程。

3.熟記導數(shù)的基本公式,會運用函數(shù)的四則運算求導法則,復合函數(shù)求導法則和反函數(shù)求導法則求導數(shù)。會求分段函數(shù)的導數(shù)。

4.會求隱函數(shù)的導數(shù)。掌握對數(shù)求導法與參數(shù)方程求導法。

5.理解高階導數(shù)的概念,會求一些簡單的函數(shù)的n階導數(shù)。

6.理解函數(shù)微分的概念,掌握微分運算法則與一階微分形式不變性,理解可微與可導的關系,會求函數(shù)的一階微分。

(二)中值定理及導數(shù)的應用

1.理解羅爾(Rolle)中值定理、拉格朗日(Lagrange)中值定理及它們的幾何意義,理解柯西(Cauchy)中值定理、泰勒(Taylor)中值定理。會用羅爾中值定理證明方程根的存在性。會用拉格朗日中值定理證明一些簡單的不等式。

3.會利用導數(shù)判定函數(shù)的單調性,會求函數(shù)的單調區(qū)間,會利用函數(shù)的單調性證明一些簡單的不等式。

4.理解函數(shù)極值的概念,會求函數(shù)的極值和最值,會解決一些簡單的應用問題。

5.會判定曲線的凹凸性,會求曲線的拐點。

6.會求曲線的漸近線(水平漸近線、垂直漸近線和斜漸近線)。

7.會描繪一些簡單的函數(shù)的圖形。

三、一元函數(shù)積分學

(一)不定積分

1.理解原函數(shù)與不定積分的概念及其關系,理解原函數(shù)存在定理,掌握不定積分的性質。

2.熟記基本不定積分公式。

3.掌握不定積分的第一類換元法(“湊”微分法),第二類換元法(限于三角換元與一些簡單的根式換元)。

4.掌握不定積分的分部積分法。

5.會求一些簡單的有理函數(shù)的不定積分。

(二)定積分

1.理解定積分的概念與幾何意義, 掌握定積分的基本性質。

2.理解變限積分函數(shù)的概念,掌握變限積分函數(shù)求導的方法。

3.掌握牛頓—萊布尼茨(Newton—Leibniz)公式。

4.掌握定積分的換元積分法與分部積分法。

5.理解無窮區(qū)間上有界函數(shù)的廣義積分與有限區(qū)間上無界函數(shù)的瑕積分的概念,掌握其計算方法。

6.會用定積分計算平面圖形的面積以及平面圖形繞坐標軸旋轉一周所得的旋轉體的體積。

四、無窮級數(shù)

(一)數(shù)項級數(shù)

1.理解級數(shù)收斂、級數(shù)發(fā)散的概念和級數(shù)的基本性質,掌握級數(shù)收斂的必要條件。

3.理解任意項級數(shù)絕對收斂與條件收斂的概念。會用萊布尼茨(Leibnitz) 判別法判別交錯級數(shù)的斂散性。

(二)冪級數(shù)

1.理解冪級數(shù)、冪級數(shù)收斂及和函數(shù)的概念。會求冪級數(shù)的收斂半徑與收斂區(qū)間。

2.掌握冪級數(shù)和、差、積的運算。

3.掌握冪級數(shù)在其收斂區(qū)間內的基本性質:和函數(shù)是連續(xù)的、和函數(shù)可逐項求導及和函數(shù)可逐項積分。

五、常微分方程

(一)一階常微分方程

1.理解常微分方程的概念,理解常微分方程的階、解、通解、初始條件和特解的概念。

2.掌握可分離變量微分方程與齊次方程的解法。

3.會求解一階線性微分方程。

(二)二階常系數(shù)線性微分方程

1.理解二階常系數(shù)線性微分方程解的結構。

2.會求解二階常系數(shù)齊次線性微分方程。

六、向量代數(shù)與空間解析幾何

(一)向量代數(shù)

1.理解向量的概念,掌握向量的表示法,會求向量的模、非零向量的方向余弦和非零向量在軸上的投影。

2.掌握向量的線性運算(加法運算與數(shù)量乘法運算),會求向量的數(shù)量積與向量積。

3.會求兩個非零向量的夾角,掌握兩個非零向量平行、垂直的充分必要條件。

(二)平面與直線

1.會求平面的點法式方程與一般式方程。會判定兩個平面的位置關系。

2.會求點到平面的距離。

3.會求直線的點向式方程、一般式方程和參數(shù)式方程。會判定兩條直線的位置關系。

4.會求點到直線的距離,兩條異面直線之間的距離。

5.會判定直線與平面的位置關系。

試卷結構

試卷總分:150分

考試時間:150分鐘

試卷內容比例:

函數(shù)、極限和連續(xù)約 20%

一元函數(shù)微分學 30%

一元函數(shù)積分學 30%

無窮級數(shù)、常微分方程 15%

向量代數(shù)與空間解析幾何 5%

試卷題型分值分布:

選擇題共5題,每小題4分,總分20分,

填空題共10題,每小題4分,總分40分,

計算題共8題,總分60分,

綜合題共3題,每小題10分,總分30分。  

   好了關于浙江專升本數(shù)學考試范圍的問題就回答到這里了,我們從浙江專升本可以報考哪些大學中發(fā)現(xiàn)哪些院校也是在不斷擴招中,所以只要認真學習備課浙江專升本一般都能考上,但是也不是絕對的,只要努力了問心無愧就好!

推薦閱讀

公眾號

抖音

bilibili

微博

聯(lián)系我們

服務熱線:023-68141520
返回頂部
請選擇培訓項目
專升本/專轉本/專接本 等級職稱/考研

操作成功

關閉