關于易學仕 | 好老師教育官網(wǎng) |
移動APP下載

掃碼下載易學仕在線APP

項目/地區(qū)
當前位置: 易學仕在線> 考試資訊> 報考> 大綱> 四川> 西南交通大學希望學院2020年專升本《高等數(shù)學》考試大綱(管理類)

西南交通大學希望學院2020年專升本《高等數(shù)學》考試大綱(管理類)

發(fā)布時間:2020/05/28 13:57:55 來源:易學仕專升本網(wǎng) 閱讀量:2067 熱點: 西南交通大學希望學院專升本

摘要:西南交通大學希望學院2020年專升本《高等數(shù)學》考試大綱(管理類)

總要求

考生應該理解或了解《高等數(shù)學》中函數(shù)、極限、連續(xù)、一元函數(shù)微分學、一元函數(shù)積分學、多元函數(shù)微積分學、無窮級數(shù)、微分方程。本課程的內(nèi)容按基本要求的高低用不同的詞匯加以區(qū)分。對概念、理論從高到低用“理解”、“了解”、“知道”三級區(qū)分;對運算、方法從高到低用“熟練掌握”、“掌握”,“會”或“能”三級區(qū)分。

考試用時:120分鐘

 

考試范圍及要求

一、函數(shù)、極限與連續(xù)

1)理解函數(shù)概念(包括分段函數(shù)、復合函數(shù)、隱函數(shù)和初等函數(shù))和函數(shù)的兩個要素;

2)掌握函數(shù)符號的意義,會求函數(shù)的定義域和表達式及函數(shù)值(包括分段函數(shù));

3)掌握基本初等函數(shù)(常值函數(shù)、冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù),反三角函數(shù))的解析式、性質(zhì)及圖形及推廣;熟練掌握復合函數(shù)的復合過程;

4)了解函數(shù)與其反函數(shù)之間的關系(定義域、值域、圖象之間的關系及簡單應用),會求單調(diào)函數(shù)的反函數(shù)。

5)理解極限的概念(對極限定義中的“”,“”等形式的描述不作要求)

6)會求函數(shù)在一點處的左右極限,理解函數(shù)在一點處極限存在的充分必要條件;

7)了解極限的性質(zhì),掌握極限的四則運算法則和常用的求極限方法;

8)理解無窮大量、無窮小量的概念,掌握無窮小量的性質(zhì)及其與無窮大量的關系,會進行無窮小量階的比較:

9)熟練掌握用兩個重要極限求極限的方法;

10)理解函數(shù)在一點連續(xù)與間斷的概念,理解函數(shù)在一點連續(xù)的幾何意義,掌握判斷簡單函數(shù)(包括分段函數(shù))在一點的連續(xù)性;

11)會求函數(shù)的間斷點及確定其類型。

12)了解初等函數(shù)在其定義域區(qū)間的連續(xù)性,了解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)。

 

二、一元函數(shù)的微分學

1)理解導數(shù)概念,導數(shù)的經(jīng)濟意義及其幾何意義,知道可導與連續(xù)的關系,能用定義求函數(shù)在一點處的導數(shù),會求曲線上一點處的切線方程與法線方程;

2)熟練掌握導數(shù)基本公式、四則運算法則及復合函數(shù)的求導方法;

3)掌握隱函數(shù)求導法,參數(shù)方程求導法,理解對數(shù)求導法,知道反函數(shù)求導法;

4)理解高階導數(shù)概念,會求高階導數(shù)(以二階導數(shù)為主);

5)理解函數(shù)的微分概念,掌握微分法則、可微與可導的關系,會求函數(shù)的一階微分。

 

三、中值定理及導數(shù)的應用

1)知道羅爾定理、拉格朗日中值定理的條件及結論,會求值;

2)熟練掌握并利用洛必達法則求各種未定式極限;

3)掌握用導數(shù)判別函數(shù)單調(diào)性的方法,理解函數(shù)極值的概念;

4)理解駐點、極值點、最值點的概念,知道極值點與駐點、不可導點的關系,掌握利用一階導數(shù)求函數(shù)極值、最值的方法,并會求解簡單的應用問題(包括經(jīng)濟分析中的問題);

5)會判斷曲線的凸性,會求曲線的拐點;

6)了解函數(shù)圖象的描繪。

 

四、不定積分

1)理解并掌握原函數(shù)與不定積分的概念及其關系,掌握不定積分的性質(zhì),了解原函數(shù)存在定理;

2)熟練掌握不定積分的基本積分公式(理解不定積分與導數(shù)之間的關系);

3)熟練掌握直接積分法、第一類換元法積分法、第二類換元法中的冪代換法(被積函數(shù)中含有的因子及其推廣)分部積分法。會第—二類換元法中的三角代換法(弦變、切變,割變);

4)會求簡單有理函數(shù)的不定積分(分解定理可以不作要求),會求一些簡單的無理函數(shù)及三角函數(shù)有理式的不定積分。

 

五、定積分

1)理解定積分的概念及其幾何意義,了解函數(shù)可積的條件;

2)掌握定積分的基本性質(zhì);

3)理解變上限的定積分是變上限的函數(shù),對變上限函數(shù)求導數(shù)的方法;

4)熟練掌握定積分的計算方法;

5)理解無窮區(qū)間上廣義積分的概念,掌握其計算方法;

6)掌握用定積分計算平面圖形的面積以及解決簡單的經(jīng)濟問題。

 

六、向量代數(shù)與空間解析幾何

1.向量代數(shù)

1)理解向量的概念,掌握向量的坐標表示法,會求單位向量、方向余弦、向量在坐標軸上的投影。

2)掌握向量的線性運算、向量的數(shù)量積以及二向量的向量積的計算方法。

3)掌握二向量平行、垂直的條件。

2.平面與直線

1)會求平面的點法式方程、一般式方程。會判定兩平面的垂直、平行。

2)會求點到平面的距離。

3)了解直線的一般式方程,會求直線的標準式方程、參數(shù)式方程。會判定兩直線平行、垂直。

4)會判定直線與平面間的關系(垂直、平行、直線在平面上)。

3.簡單的二次曲面

了解球面、母線平行于坐標軸的柱面、圓錐面、橢球面、拋物面、和雙曲面的方程及其圖形。

 

七、多元函數(shù)的微積分學

1)理解空間直角坐標系的意義,了解空間直線與平面及簡單的二次曲面的方程;

2)了解二元函數(shù)的概念、幾何意義,了解二元函數(shù)的極限和連續(xù)的概念,會求二元函數(shù)的定義域;

3)理解偏導數(shù)概念,了解全微分概念,知道全微分存在的必要條件和充分條件;

4)掌握二元函數(shù)的一、二階偏導數(shù)的求法,會求二元函數(shù)的全微分;

5)掌握復合函數(shù)一階偏導數(shù)的求法,掌握隱函數(shù)求偏導數(shù)的計算方法:

6)會求二元函數(shù)的無條件極值,會利用拉格朗日乘數(shù)法求簡單的條件極值。

7)了解二重積分的概念及其幾何含義,會計算一些簡單的二重積分。

 

八、無窮級數(shù)

1)理解無窮級數(shù)收斂、發(fā)散以及其和的概念,了解無窮級數(shù)的基本性質(zhì)及收斂的必要條件;

2)熟悉幾何級數(shù)、級數(shù)的斂散條件;

3)掌握正項級數(shù)的比較判別法與比值判別法,了解正項級數(shù)的根值判別法,理解任意項級數(shù)絕對收斂的概念,了解條件收斂的概念,掌握任意項級數(shù)的萊布尼茲判別法;

4)理解冪級數(shù)的概念,并能熟練地判定其收斂半徑和收斂區(qū)間,了解和函數(shù)及其計算。

 

九、微分方程

1)了解微分方程、解、通解、初始條件和特解的概念;

2)熟練掌握可分離變量的微分方程及一階線性微分方程的解法;

3)會解齊次型方程和貝努利方程,了解全微分方程的概念及其解法。 

 

參考教材

《高等數(shù)學》上、下冊    同濟大學數(shù)學系編   高等教育出版社

《應用數(shù)學》   主編:趙威 潘峰   航空工業(yè)出版社

 

推薦閱讀

西南交通大學希望學院2020年專升本《高等數(shù)學》考試大綱(工程類)

推薦閱讀
服務熱線:023-68141520
返回頂部
請選擇培訓項目
專升本/專轉本/專接本 等級職稱/考研

操作成功

關閉